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仮想音響空間内の音声了解度推定に用いるひずみ尺度の検討∗

○小林洋介, 近藤和弘 (山形大)

1 はじめに

人間の両耳効果に基づく聴覚ディスプレイ [1]を用
いた音響システムが登場してきた．これまで聴覚ディ
スプレイは高臨場感再生法として用いられてきたが，
拡張音響現実 (Augmented Audio Reality:AA R)シ
ステムにおける情報オブジェクトにも利用可能であ
る．AARシステムの評価を考えた時，付加した音声
情報の臨場感も重要であるが，システム使用者の主
観音声品質の評価が必要である．特に音声システム
においては，聞き取りやすさの主観評価法である明
瞭度・了解度が重要な指標となる．
我々はこれまでAARシステムを志向した頭部伝達関
数 (Head-Related Transfer Functions:HRTF)を用い
た仮想音響空間内の立体音声の音声了解度を評価して
きた [2]その結果，聴取者の正面に定位した話者音声
から妨害雑音を水平面で 45 deg.以上話して定位する
と音声了解度が向上することが確認された．またこの
時のHRTFによる音声了解度の向上分は SNR(Signal

to Noise Ratio)で約 6 dBであった [3]．
しかし，このような音声了解度の主観評価は評価音が
膨大になり，被験者一人あたりの負担が大きくなる．
そこで何らかの客観評価指標を用いて音声了解度を
推定する手法が必要になる．我々はこれまで ITU-T

勧告 P.862の PESQ[4]を用いた音声了解度の推定 [5]

を行った.その結果 SNRが 10 dB以上では相関が高
かったが，音声了解度の変化が大きい 0 dBから-15

dBにかけては相関は低い結果になった．しかし，別
の了解度試験コーパスである HINT[6]を用いた立体
音声の主観結果推定では相関係数 r=0.91と高い値が
報告されている [7]．これらの結果から，仮想音響空
間内の音声了解度の評価に PESQを含む何らかのひ
ずみ尺度を用いることが有効であると考えられる．
よって本稿では，我々がこれまで検討してきた仮想空
間内音声了解度試験の結果 [3, 8, 9]を用いて仮想音
響空間内の音声了解度推定を行い，最適なひずみ尺
度を検討する．

2 音声了解度試験

2.1 日本語版Diagnostic Rhyme Test (DRT)

　 DRTとは語頭 1音素のみ異なる単語対の評定
用リストを用いて行う了解度試験法である [10].被験
者は単語対の内の 1単語のみを聴取し,どちらの音声
が聴こえたか二者択一で選択する．評定に用いる単
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語対の語頭子音は下記の 6つの属性から成り，これ
らの単語対を評定することで属性ごとの了解度を測
定することができる．以下に 6つの属性の特徴を示
す．属性名の前のラベルは結果の表に対応している．
評価単語数は各属性共に 20単語で総数は 120単語に
なる．

(V) Voicing: 有声音と無声音の分類
(N) Nasality: 鼻音と口音の分類
(Su) Sustention: 継続性のある音とない音の分類
(Si) Sibilation: 波形の不規則性に関する分類
(G) Graveness: 抑音と鋭音の分類
(Co) Compactness: スペクトル上のエネルギーが一つ

のフォルマント周波数に集中するか、分散する
かの分類

(A) 120単語平均: 上記 6属性の平均値

被験者の正答率を 6種の音素特徴別，あるいは全
回答数の平均で評価する．正答率は式 (1)の調整式に
より偶発的正答を排除する．

S =
R−W

T
× 100[%] (1)

ここで S：調整後正答率，R：正答数，W：誤答数，
T：全試行数である．これは被験者が全くでたらめに
回答した場合に R≈W となり， S≈0となる．

2.2 音像の配置

本稿における音像配置図を Fig.1に示す．音像の配
置にはKEMAR-HRIR[11].を用いた．まず聴取者を
中心に，正面を 0 deg., 背面を 180 deg. として右回
りを+，左回りを-とする 2次元の極座標をとり，正
面に 0 deg.には評価音を発生する話者音像を定位し，
そこから 45 deg.ごとに 8方位にノイズを定位する．
この時の円の半径は KEMAR-HRIRを計測した 1.4

mとなる．評価音はKEMAR-HRIRのサンプリング
周波数である 44.1 kHzになるように DRT評価音声
と妨害雑音をアップサンプリングして使用した．

2.3 妨害雑音の設定と主観評価

評価音は女性 1話者の 120単語にである．妨害雑
音は [3, 8, 9]の検討で用いたバブルノイズ [12]を用
いた．また，妨害雑音の音圧は，0 deg.において評価
音声との SNRが 6，0，-6，-12 dBとなるように設
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Fig. 1 音像配置図

定した．妨害音の定位方位は Fig.1に示した 8方位で
あり，この各点から 4種の SNRで再生した．評価音
声はすべてヘッドホンで提示した．
被験者数は [3, 8, 9]の結果をまとめたものであり，の
べ 28人のバブルノイズによる主観評価の平均値にな
る．

3 ひずみ尺度

3.1 セグメンタル SNR [13]

セグメンタル SNR(以下 SNRseg)は時間領域にお
ける波形のひずみの大きさを表す尺度の一つで，分析
フレームごとの SNRを算出し全フレームの SNRの
平均値を用いるひずみ尺度であり，以下の式 (2)で定
義される．ここで x(n),x̂(s)(n)は j番目の分析フレー
ムでの音声信号と雑音重畳音声信号 (劣化音)であり，
Lは分析フレーム長，Mは全フレーム数を示す．

SNRseg=

10

M

M−1∑
m=0

log10

Nm+N−1∑
n=Nm

x(n)
2

Nm+N−1∑
n=Nm

(x(n)− x̃(n))
2

(2)

3.2 周波数重み付セグメンタル SNR[13]

周波数重み付セグメンタル SNR(以下 fwSNRseg)

は評価信号をフレームで切り出したのち，さらに帯域
ごとに分割して各帯域ごとの重み係数をかけて平均を
とったものである．重み係数は人間の主観値への対応
が良くなるように [14]で定められている．fwSNRseg

の算出式を式 (3)に示す．ここで，W (j,m)は帯域 j

の重み係数，X(j,m)と X̂(n)は無劣化音声と雑音重
畳音声の m番目のフレームの帯域 j，K は分析帯域
番号，M は全フレーム数を示す．

fwSNRseg=

Fig. 2 PESQアルゴリズム

10

M

M−1∑
m=0

K∑
j=1

W (j,m) log10
X(j,m)

2

(X(j,m)− X̂(j,m))
2

k∑
j=1

X(j,m)
2

(3)

3.3 LAR距離 [13]

対数断面積比距離 (Log-Area Ratio distance以下
LAR)は，LPC係数をもちいた評価量であり，声道
を音響菅モデルとしてとらえた時の反射係数を用い
る．LARを求めるための LARパラメータ g(j)は式
(4)になる．ここで P は LPC次数であり，ηj は反射
係数である．

g(j) =
1

2
log

1 + ηj
1− ηj

= tanh−1ηj (4)

この LAR パラメータを原信号と劣化信号の両方で
求めそれらの差の全フレームでの平均は式 (4) にな
る．ここで gx(j,m)と ĝx(j,m)は原信号と劣化信号
の LARパラメータである．LARは無劣化音声と雑
音重畳音声との差なので値が小さいほど原信号に近
い値となる．

LAR= 1
M

M∑
m=1

X(j,m)
2

√√√√ 1
P

P∑
j=1

⌊gx(j)− ĝx(j)⌋ (5)

3.4 PESQ[4]

PESQ(Perceptual Evaluation of Speech Quality)

は ITU-T勧告 P.862で定義されている音声の客観品
質評価方式の一つで，ITU-T P.800勧告で定義され
る 5点満点の品質評価法であるMOS(Mean Opinion

Score)主観評価 [15]との対応が良い客観評価法であ
る．PESQ値の算出過程を Fig.2に示す．無劣化音声
と雑音重畳音声 (劣化音声)を知覚モデルを用いて時
間，バークスペクトル領域のセルにマッピングする．
次にセル間のひずみをバークスペクトルひずみのラウ
ドネスとして算出し，認知モデルを用いて主観MOS

の推定値 (PESQ値)を得る．

3.5 SNRloss[16]

SNRlossは Jianfen Ma, Philipos C. Loizouが提案
している音声了解度の客観評価指標である．SNRloss



は通常の fwSNRsegと，音声強調処理を施した信号
との比を 0～1の値で表現したもの．0が劣化がない
状態で 1に近づくほど劣化が大きい．分析時の重み
係数には fwSNRsegと同じ重み係数 [14]を用いる．

4 主観評価値とひずみ値

4.1 Better earモデル

前章のひずみ尺度を用いて，被験者の正面に評価音
声を定位しただけの無劣化音声とそれに雑音を重畳
した主観音声了解度評価信号のひずみ値 (各尺度のス
コア)を求める．しかし，各ひずみ尺度は電話用コー
デックの評価用に開発されたものであり，本研究で用
いた立体音声（バイノーラル音声）にそのまま用いる
ことはできない．この様な場合，両耳のスコアの平均
をとる場合 (Mean ear)と，スコアの良い方つまりひ
ずみの少ない方の耳の値をとる場合 (Better ear)の
二つが考えられる．本稿では [7]と同様に Better ear

のスコアを用いる．

4.2 ひずみ値の相関

音声了解度の主観評価値とひずみ値 6の相関を以
下の式によって求める．rに用いた x(n)と d(n)は主
観評価値とひずみ値の特定のサンプルであり，xとd

は全サンプルの相加平均を示す.

rs =

∑
(x(n)− x)(d(n)− d)√∑

(x(n)− x)2
√∑

(d(n)− d)2
(6)

相関係数をTable 1に示す．表中のラベルは 2.1 に
従う．ここで LARと SNRlossがすべて負の値になっ
ているのはひずみ尺度の定義によるもので，ここで
は絶対値を比較する．属性ごとに比較すると，どの
尺度も Voicingはやや相関が低く，Sibilationはほぼ
無相関である．これは Sibilationは白色雑音に近い特
徴の子音であり，バブルノイズなどの環境雑音にも
ともと頑強であることが原因である [10]．Nasality，
Graveness，Compactnessは尺度ごとの差が小さく相
関が高い．Sustentionに関してはひずみ尺度の差が
みられ，SNRsegとPESQは相関が高いものの，fwS-
NRseg,LAR,SNRlossは極端に低い．120単語の平均
値は全体的に相関が 0.8以上と高い．

5 音声了解度推定

5.1 了解度推定法

了解度推定のために縦軸に了解度，横軸にひずみ値
をとった散布図を作成し，最小二乗法による曲線あて
はめを行い，DRTの 6属性と 120単語の平均値の合
計 7本の了解度推定関数を求める．この了解度推定関
数に，ひずみ値を代入することで了解度を推定する．

Table 1 主観評価値とひずみ値の相関係数
SNRseg fwSNRseg LAR PESQ SNRloss

V 0.43 0.41 -0.33 0.38 -0.35

N 0.75 0.74 -0.70 0.72 -0.70

Su 0.91 0.10 -0.05 0.85 -0.06

Si 0.10 0.09 -0.08 0.07 -0.08

Gr 0.88 0.88 -0.82 0.82 -0.83

Co 0.91 0.90 -0.83 0.86 -0.84

A 0.88 0.86 -0.81 0.82 -0.83
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Fig. 3 SNRsegによる Nasalityの推定曲線

SNRsegを用いたときの Nasalityのひずみ値と主観
評価値の分布と推定関数を Fig.3に示す．

5.2 評価指標

推定した了解度の精度推定のために主観評価によ
る了解度との平均二乗誤差 (RMSE) と相関係数 (r)

を以下の式 (7)と式 (8)で算出した．rに用いた x(n)

と y(n)は主観評価値と推定値の特定のサンプルであ
り，xとyは全サンプルの相加平均を示す．

RMSE=√∑
(Subjective score− Estimated score)

2

N
(7)

re =

∑
(x(n)− x)(y(n)− y)√∑

(x(n)− x)2
√∑

(y(n)− y)2
(8)

5.3 推定性能評価試験

音声了解度を推定した結果をTable 2とTable 3に
示す．表中のラベルは 2.1 で示した内容に一致する．
まず音素特徴別にみた場合は，Sibilationとそれ以外
の 5種に分けることができる．Sibilationに関しては



Table 2 性能推定結果 (RMSE)

SNRseg fwSNRseg LAR PESQ SNRloss

V 3.18 3.18 4.23 3.64 3.53

N 6.19 5.82 7.32 7.17 6.65

Su 4.83 1.92 2.04 6.55 1.94

Si 2.01 1.93 2.02 2.03 1.93

Gr 5.25 5.17 8.24 8.86 5.82

Co 4.17 3.49 8.43 6.44 4.59

A 3.15 2.31 4.90 4.73 2.90

Table 3 性能推定結果 (相関係数)

SNRseg fwSNRseg LAR PESQ SNRloss

V 0.80 0.80 0.60 0.72 0.74

N 0.89 0.90 0.84 0.85 0.87

Su 0.95 0.35 0.05 0.91 0.32

Si 0.24 0.34 0.15 0.12 0.33

Gr 0.96 0.96 0.91 0.88 0.95

Co 0.97 0.98 0.89 0.94 0.97

A 0.97 0.98 0.90 0.91 0.97

RMSEは小さいものの，相関も極端に悪い．これは
前章のひずみ値との相関の傾向と同様であると考え
られる．その他の音素特徴に関してはひずみ尺度ご
との傾向差はあるが属性による特徴は見られない．
次にひずみ尺度別に見た場合，fwSNRsegの RMSE

はすべての属性で一番小さい，しかし Sustentionの
時の相関は他の尺度と比べて低い値 (r=0.35)になる．
SNRsegは fwSNRsegに次いで RMSEが小さいこと
が多く相関も Sibilation以外は r=0.80以上と全体的
に高い．LARはGravenessとCompactnessのRMSE

が 8%以上と大きくなりVoicingの相関係数が r=0.60

と若干低く，Sustention についてはほぼ無相関であ
る．PESQ は他と比べると Sustention，Graveness，
CompactnessのRMSEが大きいが相関はおおむね高
い．SNRlossも fwSNRsegと同等のRMSEで相関も
高いが，fwSNRsegと同様に Sustentionの相関が目
立って低い (r=0.32) ．全 120 単語での推定結果を
Fig.4に示す．

6 まとめ

AARシステムを想定した仮想立体音声の音声了解
度主観評価の推定に用いるひずみ尺度を検討した．主
観評価値とひずみ尺度の相関を比較した結果，どの
属性も Voicingはやや相関が低く，Sibilationは無相
関であった．Sustentionはひずみ尺度ごとの傾向差が
大きく，SNRsegと PESQは相関が高かったものの，
他の尺度は無相関に近い値となった．その他の属性は
おおむね相関は高く，全単語平均値も高かった．
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Fig. 4 性能推定結果 (120単語平均)

また主観値の推定精度も主観値とひずみ値の相関と同
傾向だが，Voicingの相関が高くなっているため，主
観値とひずみ値の相関の低さが必ずしも推定値の推
定精度に影響を与えるとは言い難い．
今後はより推定性能を上げるため，複数のひずみ尺
度を併用した評価指標 (一例として [17]など)や fwS-

NRsegの重み係数を日本語DRTに対応するように若
干変更することなどが考えられる．
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