2010 FFEE 6 BIFHROIRF2 AL S (IWE RS
EEES 10-6-B4-5

HERFZAWL:-SPHYIaL—3>0
RBERLIZCET HEE

TR I 1RV L N T N A - S = N/ R B

FHSCTIE, ZHOEREE FPU AEEINTWDLT A 22 HANWT, SPHILE
JAFEY I 2 b—a VOFEEFELLETOBAEEBEL, HERTFOEANLEY
M EEEREZH VD Z LIck v EEREZm LS. BETFES GPU LIgE
WL, FLAREMEICRT LY I 2 b— a L ORBIER &, JeiRhrE o8 —FH
ZOWERZITOVIHE L7z, ZOfER, REFESHEHE R OHERE O RIZBNT,
TEREPE & BAEREE O RICALE L TV D Z EBbino Tz,

Precision Improvement in SPH Simulation
Using a Computational Grid

KAZUHIRO MAEDA, ! YuicHl OKuyAMAT!
and KENICHI KURODAT!

In this paper, we work on the precision improvement of the floating point
arithmetic in the SPH simulation by introducing computational grid and the
partial doubleprecision arithmetic in order to improve calculation speed using
an accelerator with many single-precision FPUs. We reveal the efficiency of
proposed method by using the GPU to evaluate an elapsed time and the MSE
of precision. The result shows that the proposed method can get a trade-off be-
tween the double-precision arithmetic and the single-precision arithmetic with
acceptable computational speed.
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2. Smoothed Particle Hydrodynamics
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Fig.6 The graph of the MSE of the surge-front position, and an elapsed time
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Table 2 Value of the MSE of the surge-front position and and elapsed time
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MSE - 0.000073 | 0.000509

FIREICHPREERT 100 DD 2 2L —3 a B L -RBRE L, (SREA L L L2

Rofo. ETROBRERIL, PR LIERIL TR 15 RIZEEWRERE o7z, 2 b OFER
X0, BEFESHEFEER EEBEOSICBNT, EE L HEBEORICMEL TV
Zimbhol. £72, SPH Y 2 b—ya VEEKE FPU B BWT N1 2 L CRHER
HBLT2HAIL, ERSNDEERKEISU TR L — A T7RAMRETHDH Z LR LT

REFIE

I N N
0 0

HUREREIH
B 7 & 5REEECST 2RT 0N (6=90.0)
Fig.7 The particle distribution of the collapsed water in the dam break problem (t=90.0)
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