平面グラフの Magic Graph の性質

杉山雅英^{†1}

Properties of Plane Magic Graphs

Masahide Sugiyama^{$\dagger 1$}

和文概要:一般にグラフに対して頂点に着目した Vertex Magic (VM) ラベリング,辺に着目した Edge Magic (EM) ラベリングを定義できる.さらに平面グラフに対しては面 に着目した Face Magic (FM) ラベリングを定義できる.本 報告では平面グラフに対して VM, EM, FM を統一的に扱 う方法を提案し,平面グラフにおける幾何的双対性を用い て VM と FM に対する双対性を導く.多面体は平面に投 影することで平面グラフと見なすことができる.SAT ソル バーを用いて正多面体の正4面体,正6面体と正8面体の 定和の分布に対して双対性が成り立つことを実験的に示す.

1. まえがき Sedláček (1963)¹⁾ が Magic Graph 問題を 提起して以来, Wallis 等 (2000)²⁾ の Edge-Magic Total Labeling (EMTL) や Lih(1983)³⁾ の平面グラフに対する Face Magic Graph, Bača(1987)⁴⁾, Bača(2017)⁵⁾ の平面グラフに対 する Anti-Magic Graph が検討されてきた. 平面グラフに限定 すると Magic graph の magic 性は vertex, edge, face の3つの 要素に対して定義できるが, 従来の研究では Face Magic (FM) と Vertex Magic (VM) との関係については述べられていない. 本報告では平面グラフにおける双対グラフ・双対変換を用いて Magic Graph の VM と FM の双対性について述べ, 正多面体 における VM 定和と FM 定和の分布に対して双対性が成り立つ ことを述べる.

2. Magic Graph の分類 連結平面グラフの集合 \wp のグラ フ $G = V \cup E \cup F \in \wp$ から連続する自然数の集合 {1,2,...,n} の分割への写像 $\lambda : G \rightarrow 2^{\{1,2,...,n\}}$ に対して式 (1) で重みを定 義する. ここで V, E, F はグラフ G の頂点・辺・面 (領域) の集 合である.

$$\lambda^*(z) = \lambda(z) + \sum_{\substack{w \sim z \\ z \neq c}} \lambda(w) \quad (z \in Z)$$
(1)

ここで Z は V,E,F のいずれかであり、以降ではそれを Z = V|E|F と表すことにする.式(1)の右辺の第2項の Z^c は Z = V

†1 会津大学

The University of Aizu

の時, $Z^c = E \cup F$ であり,式 (1)の右辺の第2項の和は頂点 zを共有する全ての辺と面である. Z = Eの時,辺 zの両端の頂点 と zを辺とする二つの面, Z = Fの時,面 zに含まれる辺と頂 点である.ただし,式(1)の $\lambda(z)$ ($z \in G$)を含む和の計算は部分 集合 $\lambda(z)$ に属する数の和と定義する. $\lambda^*(z)$ が全ての $z \in Z$ に 対して一定値の時, $G, \lambda \in Z$ Magic (ZM) graph, Z Magic label (写像)と呼び,その一定値 $S = \sigma(\lambda)$ を定和 (magic sum)と呼 ぶ.Z = V, E, Fに応じて Vertex Magic (VM), Edge Magic (EM), Face Magic (FM)と呼ぶ.頂点・辺・面に置く数字の個数 が各々一定値 $m_v, m_e, m_f (\geq 0)$ の時, $\mathbf{m} = [m_v, m_e, m_f]$ 型^{*1} magic graph (label)と呼ぶ³⁾.v = |V|, e = |E|, f = |F|とす ると $n = m_v v + m_e e + m_f f$ である.グラフ G 上の m 型 Z magic label λ の全体を $\Lambda_{\mathbf{m}}^Z(G)$ で表す⁷⁾. G の平面性を問わな い場合には $F = \phi, f = 0, m_f = 0$ とし, $\mathbf{m} = [m_v, m_e]$ とする.

3. 平面グラフの双対と Magic Graph $G \in \wp$ に対して V, E, F の要素に 1 から番号付けして辺行列 (辺 $e_{\ell}(\ell = 1, \dots, e)$ の両端の頂点 v_i, v_j の番号 i, j の行列. 以降では辺頂点行列と 呼ぶ) 及び辺面行列 (辺 e_{ℓ} を共有する面 f_i, f_j の番号 i, j の行 列)を M_V, M_F と表す. 二つの行列は $e \times 2$ 行列である. 図 1(a) に示す正4 面体の平面グラフの辺頂点行列, 辺面行列を式 (2) に示す. M_V の数字は頂点の番号であり M_F の数字は面 の番号である. 逆に M_V, M_F において頂点 $v_i \in V$ を含む辺 番号の集合, 面 $f_j \in F$ の辺番号の集合を求めることで頂点 v_i , 面 f_j と共有する辺番号情報を構成できる. G が正則 (頂点次数 が一定 $d^{(v)}$), 面次数が一定 ($d^{(f)}$) であれば頂点辺情報は行列で 表され頂点辺行列 E_V 及び面辺行列 E_F は式 (3) で示すように $v \times d^{(v)}$ 型行列, $f \times d^{(f)}$ 型行列で与えられる.

	e_1	e_2	e_3	e_4	e_5	e_6
$oldsymbol{M}_V^t$	1	1	1	2	3	4
	2	3	4	3	4	2
$oldsymbol{M}_F^t$	1	1	2	1	2	3
	3	2	3	4	4	4

*1 Lih は (a, b, c) 型と呼んでいる.

2018 年度 情報処理学会東北支部研究会(岩手大) IPSJ Tohoku Branch SIG Technical Report

_	v_1	v_2	v_3	v_4
	1	1	2	3
$oldsymbol{E}_V^t$	2	4	4	5
	3	6	5	6
	f_1	f_2	f_3	f_4
	f_1 1	f_2 2	f_3 1	f_4 4
$oldsymbol{E}_F^t$	$ \begin{array}{c} f_1\\ 1\\ 2 \end{array} $	f_2 2 3	f_3 1 3	f_4 4 5

(3)

 $G \in \wp$ の幾何的双対グラフ $\hat{G} \in \wp$ を対応させる写像を ρ とする. ここで幾何的双対グラフ $\hat{G} = \hat{V} \cup \hat{E} \cup \hat{F}$ とは与えられた平面グラフ $G = V \cup E \cup F$ に対し,その外面も含む各面 f_i に新たな頂点 $\hat{v}_i \in \hat{V}$ を対応させ、グラフ G で隣り合う面 f_k, f_ℓ に対応する頂点同士 \hat{v}_k, \hat{v}_ℓ を結んで得られるグラフである.写像 ρ は平面グラフを平面グラフに対応させるので \wp の変換であり、以降では双対変換と呼ぶ.

命題1 平面グラフの双対変換6)

 $G \in \wp$ の幾何的双対グラフ $\hat{G} \in \wp$ を対応させる写像 $\rho: \wp \to \wp \ (\rho(G) = \hat{G}) \ \mathrm{i} \ G, \hat{G}$ の頂点・辺・面の個数を v, e, f 及び $\hat{v}, \hat{e}, \hat{f}$ とすると $\hat{v} = f, \hat{e} = e, \hat{f} = v$ であり, $\rho^2: \wp \to \wp \ \mathrm{i} \ \mathrm{i} \ \mathrm{e}^{\mathrm{g}}$ 等像である.

証明: Gの面を \hat{G} の頂点に対応させるので $\hat{v} = f$ である. 平面グ ラフ G の全ての辺は面の境界であり、一方の面と他方の面に対応 する \hat{G} の二つの頂点を結ぶ辺に対応するので $\hat{e} = e$ である. G, \hat{G} は平面グラフであるのでオイラーの公式 $v-e+f = 2, \hat{v}-\hat{e}+\hat{f} = 2$ が成り立つので $\hat{f} = v$ である. \hat{G} の頂点を結ぶ辺は G に おける隣り合う面の辺であり、 \hat{G} の隣り合う面は Gにおけ る辺を両端とする頂点であるので Ĝ の辺頂点行列, 辺面行列 は G の辺頂点行列,辺面行列を入れ替えることで得られる. $M_{\hat{V}} = M_F, M_{\hat{F}} = M_V.$ 従って $\rho^2(G)$ の辺頂点行列,辺面行 列は G のそれと一致する.即ち恒等写像である (証明終了) 本報告では $\hat{G} = \rho(G)$ を満たすグラフ G, \hat{G} を ρ 双対と呼ぶ. 図 1-(b) に正4面体 G の双対変換で得られる Ĝ を示す. k 角形 *C_k* の ρ 双対グラフは図 2 に示す 2 頂点と *k* 個の多重辺を持つ グラフである.正4面体と正4面体,正6面体と正8面体,正1 2面体と正20面体はそれぞれ ρ 双対である.式 (4) に正6面 体の辺頂点行列,辺面行列を,図3に正6面体と正8面体の双 対グラフを示す.

図 2 2つの頂点と k 個の多重辺のグラフ

資料番号: 2018-3-5 2018/12/15

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
$oldsymbol{M}_V^t$	1	2	3	4	1	2	3	4	5	6	7	8
	2	3	4	1	5	6	7	8	6	7	8	5
$oldsymbol{M}_F^t$	1	1	1	1	2	2	3	4	2	3	4	5
	2	3	4	5	5	3	4	5	6	6	6	6
												(4)

図3 正6面体と正8面体の双対グラフ

ー般に二つのグラフ $G_1 = V_1 \cup E_1, G_2 = V_2 \cup E_2$ が同型 $G_1 \simeq G_2$ であるとは双射 $f: G_1 \to G_2(f: V_1 \to V_2, f: E_1 \to E_2)$ が G の任意の辺 $e \in E_1$ の両端の頂点 $e = v_i v_j (v_i, v_j \in V_1)$ に対 して $f(v_i)f(v_j) \in E_2$ を満たすことである. $G_1 \simeq G_2$ であれば V_1, V_2 の対応する頂点の次数は同一の値である. さらに Magic 性に関して命題 2 が成り立つ.

命題 2 同型のグラフが保存する Magic 性 二つのグラフ G_1, G_2 が同型であり, G_1 が $[m_v, m_e]$ VM (EM) であれば G_2 も $[m_v, m_e]$ VM (EM) である.

証明:同型写像を $f: G_1 \to G_2$ とし G_1 の VM (EM) λ_1 に 対して $\lambda_2(f(z)) = \lambda_1(z)$ ($z \in V_1 \cup E_1$) とする. G_1 の任意 の辺 $e^{(1)} = v_i v_j$ の G_2 の対応する辺 $e^{(2)} = f(e^{(1)})$ に対して $e^{(2)} = f(v_i)f(v_j)$ が成り立つ. 従って G_1 における EM λ_1 に 対して G_2 の EM λ_2 は G_2 の EM となる. 同様に VM λ_1 に 対して, 任意の頂点 $v^{(1)} \in G_1$ につながる辺 $e_\ell \in G_1$ に対応す る辺 $f(e_\ell) \in G_2$ も $f(v^{(1)})$ につながる辺となるので λ_2 を G_2 の VM とできる. (証明終了) 平面グラフ G_1, G_2 が同型であってもそれらの双対グラフ $\rho(G_1), \rho(G_2)$ は同型とは限らない. 即ちグラフの同型は双対性

を保存しない. 同型であっても平面グラフの対応する面の次数は 同一とは限らない. 従って平面グラフにおいて双対性を保存する 同型を面を考慮したより強い定義が必要となる.

命題 3 双対変換 ρ を用いた Magic Graph の構成 $\lambda \in \Lambda_{\mathbf{m}}^{Z}(G)$ であれば双対変換 ρ を用いて $\lambda \circ \rho \in \Lambda_{\hat{\mathbf{m}}}^{\hat{Z}}(\hat{G})$ を構成できる.ここで定和は同一 $\sigma(\lambda) = \sigma(\lambda \circ \rho)$ であり, $\hat{Z}, \hat{\mathbf{m}}$ は以下で与えられる. $\hat{Z} = \begin{cases} F & (Z = V), \\ E & (Z = E), \\ V & (Z = F), \end{cases} \quad \hat{\mathbf{m}}^t = \begin{bmatrix} m_f \\ m_e \\ m_v \end{bmatrix}$

証明: $\lambda \in \Lambda_{\mathbf{m}}^{\mathbb{Z}}(G)$ であるので以下が成り立つ. $\lambda^*(z) = \lambda(z) + \sum \lambda(w) = \text{const.} (z \in Z)$ 証明すべき式は以下の通りである.

 $(\lambda \circ \rho)^*(\hat{z}) = \text{const.} (\hat{z} \in \hat{Z})$ 左辺 = $(\lambda \circ \rho)(\hat{z}) + \sum_{w \sim \hat{z}} (\lambda \circ \rho)(w) = \lambda(\rho(\hat{z})) + \sum_{w \sim \hat{z}} \lambda(\rho(w))$ $\hat{z} \in \hat{Z}$ であれば $\rho(\hat{z}) = z \in Z$ であり, $w \sim \hat{z} \leftrightarrow \rho(w) \sim z$ であ るので

左辺 =
$$\lambda(z)$$
 + $\sum_{\substack{w \sim z \\ w \in Z^c}} \lambda(w) = \text{const.}$

関数 r(x) = n + 1 - x と $\lambda(z)$ との合成を $(r \circ \lambda)(z) =$ $\{r(x) \mid x \in \lambda(z)\}$ で定義する. r(x)は昇順降順変換で線形で あるので $\lambda \in \Lambda^Z_{\mathbf{m}}(G)$ であれば $r \circ \lambda \in \Lambda^Z_{\mathbf{m}}(G)$ である. Magic Graph の研究では r(x) による対応を双対と呼んでいる.本報告 では ρ 双対と区別するために r 双対と呼ぶことにする. r 双対 に関して定和の双対性が成り立つ.

命題4 定和の双対性

 $\lambda \in \Lambda_{\mathbf{m}}^{\mathbb{Z}}(G)$ であり,頂点次数,面次数が z に依らず一定 $d^{(v)}, d^{(f)}$ であれば式 (5) が成り立つ.

$$m = \begin{cases} \sigma(\lambda) + \sigma(r \circ \lambda) = (n+1)m & (5) \\ m_v + d^{(v)}m_e + d^{(v)}m_f & (Z=V) \\ m_e + 2m_v + 2m_f & (Z=E) \\ m_f + d^{(f)}m_v + d^{(f)}m_e & (Z=F) \end{cases}$$

証明: $\tilde{\lambda} = r \circ \lambda$ とすると $\tilde{\lambda}(z) = (n+1)|\lambda(z)| - \lambda(z)$ である ので

$$\begin{split} \bar{\lambda}^*(z) &= \bar{\lambda}(z) + \sum_{w \sim z} \bar{\lambda}(w) \\ &= (n+1)|\lambda(z)| + \sum_{w \sim z} ((n+1)|\lambda(w)| - \lambda(w)) \\ &= (n+1)|\lambda(z)| + \sum_{w \sim z} (n+1)|\lambda(w)| - \lambda^*(z) \end{split}$$
従って以下が成り立つ.

$$\tilde{\lambda}^*(z) + \lambda^*(z) = (n+1)(|\lambda(z)| + \sum_{w \sim z} |\lambda(w)|) \qquad (6)$$

資料番号: 2018-3-5 2018/12/15

$$\tilde{\lambda}^{*}(z) + \lambda^{*}(z) = \begin{cases} (n+1)(m_{v} + d_{z}^{(v)}m_{e} + d_{z}^{(v)}m_{f}) & (z \in V) \\ (n+1)(m_{e} + 2m_{v} + 2m_{f}) & (z \in E) \\ (n+1)(m_{f} + d_{z}^{(f)}m_{v} + d_{z}^{(f)}m_{e}) & (z \in F) \end{cases}$$

ここで $d_z^{(v)}, d_z^{(f)}$ は z における頂点次数, 面次数である. 頂点次 数,面次数が z に依らず一定であれば $\tilde{\lambda}^*(z) + \lambda^*(z)$ は一定値 となる. (証明終了)

図 4-(a) 正4面体 FM λ ($S_{\min} = 43$) から ρ 双対変換で (b) の正4面体 VM $\lambda \circ \rho$ (S_{min} = 43) 及び (c) の正4面体 FM $ilde{\lambda} = r \circ \lambda \; (S_{\max} = 62)$ が得られる.図 4-(a) などの赤色の数字 は面に配置された数字 10 に関して FM 定和を求める数字を例 示している. ここで ρ 双対変換と r 双対とに関して予想1 が成 り立つと考えられる.

4. 定和方程式と非存在定理

 $S_Z = \sum_{z \in Z} \lambda(z)$ と表すと数字 $1, 2, \cdots, n$ は V, E, F のいず れかに配置されるので式 (7) が成り立つ.

 $S_V + S_E + S_F = 1 + 2 + \dots + n = \frac{n(n+1)}{2} = N$ (7)ここで ZM の定和 S が満たす定和方程式 (8) が導かれる⁷⁾.

命題5 ZM の定和方程式

Z Magic Graph (VM, EM, FM) の定和 $S^{(Z)}$ は式 (8) を 満たす. ここで d_z は $z \in V$ の時は頂点の次数, $z \in F$ の 時は面の次数とし, Z = V|F の時, Z^c は V, F を入れ替 えた集合とする.

$$|Z|S^{(Z)} = N + \begin{cases} S_E + \sum_{z \in Z^c} (d_z - 1)\lambda(z) & (Z = V|F) \\ \sum_{z \in V \cup F} (d_z - 1)\lambda(z) & (Z = E) \end{cases}$$
(8)

証明: Z Magic であるので $z \in Z$ に対して $\lambda^*(z)$ が一定値 $S^{(Z)}$ であり式 (1) より

$$|Z|S^{(Z)} = \sum_{z \in Z} \lambda^*(z) = \sum_{z \in Z} (\lambda(z) + \sum_{\substack{w \sim z \\ w \in Z^c}} \lambda(w))$$
$$= S_Z + \sum_{z \in Z} \sum_{\substack{w \sim z \\ w \in Z^c}} \lambda(w) \quad (\exists \exists C \ S_Z = \sum_{z \in Z} \lambda(z)) \quad (9)$$

Z = Vとすると上の式の第1項は S_V であり、第2項は全ての 頂点 zと共有する $w \in Z^c = E \cup F$ に対する $\lambda(w)$ の総和で ある.

$$\sum_{z \in V} \sum_{\substack{w \sim z \\ w \in E \cup F}} \lambda(w) = \sum_{z \in V} (\sum_{\substack{w \sim z \\ w \in E}} \lambda(w) + \sum_{\substack{w \sim z \\ w \in F}} \lambda(w))$$
$$= \sum_{z \in V} \sum_{\substack{w \sim z \\ w \in E}} \lambda(w) + \sum_{z \in V} \sum_{\substack{w \sim z \\ w \in F}} \lambda(w)$$

第1項は頂点 z を変化させた時に辺 w が共有される回数は2 回のみであるのでその総和は $\lambda(w)$ の数字の総和の2倍である. 即ち,

$$\sum_{z \in V} \sum_{\substack{w \sim z \\ w \in E}} \lambda(w) = 2 \sum_{w \in E} \lambda(w) = 2S_E$$

第2項は頂点 z を変化させた時に面 <math>w が共有される回数,即ち面 w の次数 d_w 回だけ配置された数字 $\lambda(w)$ の和を積算することになるので以下で与えられる.

$$\sum_{z \in V} \sum_{\substack{w \sim z \\ v < w}} \lambda(w) = \sum_{w \in F} d_w \lambda(w) = S_F + \sum_{z \in F} (d_z - 1)\lambda(z)$$

ここで $S_V^{w \in F} S_E + S_F = N$ であるので式 (8) が示された. Z = Fの時も同様である.次に Z = E とすると式 (9) の第1項は S_E であり,第2項は $Z^c = V \cup F$ であるので以下で与えられる.

命題 5 を用いて平面グラフに対する非存在定理を示せる. 定 理 1 の (1)-(b) は文献⁸⁾ の 定理 1 (Edge Magic に関する非存 在定理) であり,本報告の定理 1 は平面グラフへの拡張である. 定理1 ZM の非存在定理 グラフ G において |Z| が偶数で以下のいずれかの条件を 満たし, $n \equiv 1,2 \pmod{4}$ であれば ZM は存在しない. (1) Z = E とする. (a) 全ての頂点及び面の次数が奇数の場合 (b) $m_f = 0$ で全ての頂点の次数が奇数の場合 (c) $m_v = 0$ で全ての面の次数が奇数の場合 (2) Z = V|F とする. $m_e = 0$ で次数 $d_z(z \in Z^c)$ が奇 数の場合

証明: |Z|が偶数であるので式 (8)の左辺は偶数である.上 の条件のいずれの場合も右辺の第2項が偶数であるので $n \equiv$ 1,2(mod. 4)より $n(n + 1) \equiv 2(\text{mod. 4})$ であり、 $\frac{n(n+1)}{2} \equiv$ 1(mod. 2)であるので右辺の第1項は奇数である.従って式(8) を満す整数 $S^{(Z)}$ は存在しないので ZM は存在しない.(証明終 了)

頂点の個数が偶数で面での次数が奇数,面の個数が偶数で頂点 での次数が奇数であり,辺に配置する数字の和が偶数であれば, 同様の非存在性が成り立つ.従って図4に示した FM, VM にお いて辺に奇数の数字を配置する個数は奇数であることになる.定 理1を用いて命題6の正多面体の非存在が導かれる.これは文 献⁸⁾の命題14の平面グラフへの拡張である.

命題6 正多面体 ZM の非存在

- 正4,12,20面体において任意の m_v, m_f に対して m_e が奇数の時,[m_v, m_e, m_f] EM は存在しない.
- (2) 正6面体において m_e = 0 とし, m_f が奇数の時, 任
 意の m_v に対して [m_v, 0, m_f] FM は存在しない.
- (3) 正8面体において m_e = 0 とし, m_v が奇数の時, 任
 意の m_f に対して [m_v, 0, m_f] VM は存在しない.

証明: (1) 表1に示すように正4, 12, 20面体において頂点次 数及び面次数は奇数で, v, f は4の倍数であり, $e \equiv 2 \pmod{4}$ であるので $n = m_v v + m_e e + m_f f \equiv 2m_e \pmod{4}$ 従って m_e が奇数の時, $n \equiv 2 \pmod{4}$ であり, 定理1の(1)-(a)の条件を 満たすので EM は存在しない.

(2) $m_e = 0$ であるので $n = m_v v + m_f f = 8m_v + 6m_f \equiv 2m_f \pmod{4}$ であり、 m_f が奇数の時、 $n \equiv 2 \pmod{4}$ であり、頂点次数が奇数であるので 定理 1 の (2) の条件を満たすので FM は存在しない.

(3) 同様である.
(証明終了)
命題6の(2)と(3)は正6面体と正8面体との双対性として理解できる.
例えば図4の正4面体に対する[1,1,1] EM は存在しない.
表3で示すように正6面体[1,0,1] FM,正8面体の[1,0,1]
VM は存在しない.

5. 定和の存在区間 以降では簡単化してグラフ G が正則

2018 年度 情報処理学会東北支部研究会(岩手大) IPSJ Tohoku Branch SIG Technical Report

表 1	正多面	体の頂点	<u>気. 辺.</u>	面の個数とど	皮数
正多面体	頂点	辺	面	頂点次数	面次数
	(v)	(e)	(f)	$(d^{(v)})$	$(d^{(f)})$
4	4	6	4	3	3
6	8	12	6	3	4
8	6	12	8	4	3
12	20	30	12	3	5
20	12	30	20	5	3

 $d_z = d^{(v)}(z \in V)$ かつ面次数が一定 $d_z = d^{(f)}(z \in F)$ とする. Z = V|E|Fに対して $S_Z = \sum_{z \in Z} \lambda(z)$ の最大・最小は式 (10) で与えられる.

$$\max S_Z = nm_z |Z| - \frac{m_z |Z|(m_z |Z| - 1)}{2}$$

$$\min S_Z = \frac{m_z |Z|(m_z |Z| + 1)}{2}$$
(10)

5.1 VM の定和の上限・下限 命題 5 の VM 定和方程式は式 (7) を用いて以下で与えられる.

$$v \cdot S^{(V)} = \begin{cases} S_E + N & (d^{(f)} = 1) \\ (d^{(f)} - 2)S_F - S_V + 2N & (d^{(f)} \ge 2) \end{cases}$$
従って $S^{(V)}$ の上限・下限は $d^{(f)} = 1$ の場合には S_E の, $d^{(f)} > 0$

の場合には S_V, S_F の最大・最小で求められる.

 $d^{(f)} = 1$ の場合

 $d^{(f)} \ge 2$ の場合

$$v \cdot S_{\sup}^{(V)} = (d^{(f)} - 2) \max S_F - \min S_V + 2N$$

$$v \cdot S^{(V)} = (d^{(f)} - 2) \min S_F - \max S_V + 2N$$
 (12)

 $(U^{O,S_{inf}} = (u^{O,F} - 2) \min S_F - \max S_V + 2N$ max $S_V, \min S_V, \max S_F, \min S_F$ は式 (10) で与えられるので 式 (13) を得る.

$$\begin{cases} v \cdot S_{\text{sup}}^{(V)} = (d^{(f)} - 2)(nm_f f - \frac{m_f f(m_f f - 1)}{2}) \\ -\frac{m_v v(m_v v + 1)}{2} + 2N \\ v \cdot S_{\text{inf}}^{(V)} = (d^{(f)} - 2)\frac{m_f f(m_f f + 1)}{2} \\ -(nm_v v - \frac{m_v v(m_v v - 1)}{2}) + 2N \end{cases}$$
(13)

二つの式の差を取って両辺を v で割ると式 (14) を得る. $S_{\sup}^{(V)} - S_{\inf}^{(V)} = \frac{(d^{(f)} - 2)m_f m_e f e}{v} + m_v ((d^{(f)} - 1)m_f f + m_e e)$ (14)

5.2 EM の定和の上限^{*}下限 命題 5 の EM 定和方程式は以下で与えられる.

 $e \cdot S^{(E)} = (d^{(v)} - 1)S_V + (d^{(f)} - 1)S_F + N$ $d^{(v)} \ge d^{(f)}$ と仮定する. $d^{(v)} < d^{(f)}$ の場合はv, fを入れ替え ることで得られる.

$$\begin{cases} e \cdot S_{\sup}^{(E)} = d_{\operatorname{dif}} \max S_V - (d^{(f)} - 1) \min S_E + d^{(f)} N \\ e \cdot S_{\operatorname{inf}}^{(E)} = d_{\operatorname{dif}} \min S_V - (d^{(f)} - 1) \max S_E + d^{(f)} N \end{cases}$$
(15)

 $\max S_V, \min S_V, \max S_E, \min S_E$ は式 (10) で与えられるので

資料番号: 2018-3-5 2018/12/15

$$\mathbb{E}\mathbb{R} \cdot \mathbb{F}\mathbb{R}(\vec{z},\vec{z},(16) \ \vec{c} \not= \vec{z} \ \vec{c} \not= \vec{z} \ \vec{c} \not= \vec{z} \ \vec$$

5.3 FM の定和の上限・下限 命題 5 の FM 定和方程式は以

で与えられる.

$$f \cdot S^{(F)} = \begin{cases} S_E + N & (d^{(v)} = 1) \\ (d^{(v)} - 2)S_V - S_F + 2N & (d^{(v)} \ge 2) \end{cases}$$
Eoて S^(F) の上限・下限は d^(v) = 1 の場合には S_E の, d^(v) ≥ 2

の場合には S_V, S_F の最大・最小で求められる.

$$\frac{d^{(v)} = 1 \mathcal{O} \boxplus \widehat{\Box}}{\begin{cases} f \cdot S_{\sup}^{(F)} = (nm_e e - \frac{m_e e(m_e e - 1)}{2}) + N \\ f \cdot S_{\inf}^{(F)} = \frac{m_e e(m_e e + 1)}{2} + N \end{cases}$$
(17)

 $\frac{d^{(v)} \geq 2 \text{ 00場合}}{\left(\int_{C} G^{(F)} \right)}$

衏

$$f \cdot S_{\sup}^{(V)} = (d^{(v)} - 2) \max S_V - \min S_F + 2N$$

$$f \cdot S_{\inf}^{(F)} = (d^{(v)} - 2) \min S_V - \max S_F + 2N$$
 (18)

 $\max S_V, \min S_V, \max S_F, \min S_F$ は式 (10) で与えられるので 式 (19) を得る.

$$\begin{cases} f \cdot S_{\text{sup}}^{(F)} = (d^{(v)} - 2)(nm_v v - \frac{m_v v(m_v v - 1)}{2}) \\ -\frac{m_f f(m_f f + 1)}{2} + 2N \\ f \cdot S_{\text{inf}}^{(F)} = (d^{(v)} - 2)\frac{m_v v(m_v v + 1)}{2} \\ -(nm_f f - \frac{m_f f(m_f f - 1)}{2}) + 2N \end{cases}$$
(19)

二つの式の差を取って両辺を f で割ると以下を得る. $S_{\sup}^{(f)} - S_{\inf}^{(f)} = \frac{(d^{(v)} - 2)m_v m_e v e}{f} + m_f((d^{(v)} - 1)m_v v + m_e e)$ (20)

例えば正4面体の [1,1,1]型 FM 定和の上限・下限は $S_{sup}^{(F)} = 62.5, S_{inf}^{(F)} = 42.5$ でその差は 20 であり式 (20) で得られる値 と一致する. 正4面体の最小定和 $S_{min}^{(F)} = 43$ を与える配置を 図 4-(a) に示す. 正6面体の FM 定和の上限・下限は $S_{sup}^{(F)} = 143.5, S_{inf}^{(F)} = 99.5$ でその差は 44 であり式 (20) で得られる値 と一致する.

5.4 Super Magic との関係 式(15)で示したように EM 定 和の下限は S_V の最小化と S_E の最大化で得られる. Enomoto 等¹¹⁾ は v 個の頂点に $\{1, 2, \dots, v\}$ を配置する EM が存在する 時, グラフ G を Super EM と定義した. さらに Sugiyama は その定義を $[m_v, m_e]$ EM に拡張した⁸⁾. これらは S_V を最小化 する EM が構成できることに対応している. 面を考慮しない場 合には $S_F = 0$ であるので式(7) から $S_V + S_E = N$ が成り立 ち, S_V の最小化と S_E の最大化は同値である. しかし面が存在 する場合にはそれら両者を同時に最小化・最大化しなければなら ないことを示している. 同様に式(12) は VM 定和の下限は S_F の最小化と S_V の最大化で,式(18) は FM 定和の下限は S_V の 最小化と S_F の最大化で得られることを示している. ここでも VM, FM の双対性が成り立っている.

6. 定和の存在区間の分類
求めた定和の実現可能な区間 [$[S_{inf}], [S_{sup}]$]の全ての値に対し
て Magic Graph を構成できるとは限らない.式 (13)等で与え
た定和の上限・下限が整数値でありその区間の全ての値に対して
Magic Graph を構成できる場合を Perfect, 両端を含めて $\delta > 0$

の等差数列となる定和が構成できる場合を δ Perfect,上限・下限 の両端は構成できないが他は全て構成できる場合を SemiPerfect, 実現可能な区間に不規則に実現できない定和が出現する場合を Singular と定義した⁸⁾。文献⁸⁾の定理 2 で示したように命題 5 の式 (8)の左辺 $S^{(Z)}$ の係数 |Z| と右辺の $d_z - 1$ との最大公約数 cを用いて $d'_z = c(d_z - 1)$ に対して $\delta = (d'_z) > 1$ の時は $S^{(Z)}$ は δ の剰余制約を受ける.正多面体において命題 7 の剰余制約 が成り立つ.

·	
	命題 7 正多面体の定和の剰余制約
	以下の剰余制約が成り立つ. ここで命題 6 で示したように
	正12・20面体では \mathbf{EM} が存在するのは m_e が偶数に
	限られるので $m_e=2m'_e$ とする.
	(1) 正6面体の VM 定和
	$m_e = 0$ の時, $S^{(V)} \equiv -m_v(2m_v + 1) \pmod{3}$
	(2) 正8面体の FM 定和
	$m_e = 0$ の時, $S^{(F)} \equiv -m_f(2m_f + 1) \pmod{3}$
	(3) 正12面体の EM 定和
	$m_v=0$ の時, $S^{(E)}\equiv m_f+m_e^\prime({ m mod.}\ 2)$
	(4) 正20面体の EM 定和

 $m_f = 0$ の時, $S^{(E)} \equiv m_v + m'_e \pmod{2}$

証明:

- (1) 正6面体の VM 定和は $m_e = 0$ の時, $S_E = 0$ であ り表1に示すように $d_z^{(f)} = 4$ $(z \in F)$ であるので $c = (v, d_z^{(f)} - 1) = (8, 3) = 1$ で $\delta = 3$ で $8S^{(V)} \equiv$ N(mod. 3) であるので $S^{(V)} \equiv -N(\text{mod. 3}), n =$ $m_v v + m_e e + m_f f = 8m_v + 6m_f, N = \frac{n(n+1)}{2} =$ $(4m_v + 3m_f)(n+1) \equiv m_v(2m_v + 1)(\text{mod. 3})$ 従って $S^{(V)} \equiv -m_v(2m_v + 1)(\text{mod. 3})$ が示された.
- (2) 正6面体と正8面体は ρ 双対であるので正6面体の VM 定和の剰余制約は正8面体の FM 定和の剰余制約となる。
 v, f を入れ替えた式で得られる。
- (3) 正12面体のEM定和は $m_v = 0$ の時,表1に示すよう に式(8)で $e = 30, d_z^{(f)} - 1 = 4, c = (e, d_z^{(f)} - 1) =$ 2, $\delta = 2$ であり, $15S^{(E)} \equiv N/2 \pmod{2}$ である. $n = m_v v + m_e e + m_f f = 2 \cdot 30m'_e + 12m_f, N =$ $n(n+1)/2 = (30m'_e + 6m_f)(n+1)$ であるので $S^{(E)} \equiv$ $N/2 = (15m'_e + 3m_f)(n+1) \equiv m'_e + m_f \pmod{2}$ である.
- (4) 正12面体と正20面体は ρ 双対であるので正12面体の EM 定和の剰余制約は正20面体の EM 定和の剰余制約となる. v, f を入れ替えた式で得られる.

(証明終了) 命題 7-(4) は文献⁸⁾ の正20面体に対する命題 17 であり、命題7は平面グラフへの拡張である.

6.2 SAT ソルバーを用いた Magic Graphの探索 sugar と minisat による SAT ソルバー¹²⁾を用いて Magic Graph の 解探索を行う.表 2, 3, 4 に正多面体 (正4, 6, 8 面体)の

資料番号: 2018-3-5 2018/12/15

Magic Graph の VM, FM 定和の分布を示す. 表中の各項目 "A, B"のA は VMの分布, B は FM の分布を示している. 例 えば表 3 の "30:36 S" は VM 定和の分布, "19:25 S" は FM 定和の分布であり, "30:36 S" は定和の最小・最大値及び分布の 種類が S (Singular) であることを示している.

表 2	正多面体の	Magic	Graph	のVM.	FΜ	定和の分布	(1))
		0						_

		$m_v, m_e, m_f]$ の信	直
	[1, 0, 0]	[0, 1, 0]	[0, 0, 1]
正4面体	NX, NX	NX, NX	NX, NX
正6面体	NX, 18:18 P	NX, 26:26 P	NX, NX
正8面体	NX, NX	26:26 P, NX	18:18 P, NX

表3	正多面体の	Magic	Graph	のVM.	FM	定和の分布	(2))
20.0		magro	orapn			7C-18-2 72 16	(-)	/

		$[m_v, m_e, m_f]$ の値	
	[0, 1, 1]	[1, 0, 1]	[1, 1, 0]
正4面体	30:36 S, 19:25 S	14:22 S, 14:22 S	19:25 S, 30:36 S
正6面体	48:66 P, $42:53$ SP	21:39 3-P, 30:45 NX	36:48 P, 76:92 P
正8面体	76:92 P, 36:48 P	30:45 NX, 21:39 3-P	42:53 SP, 48:66 P

表 4	正多面体の	Magic	Graph	の VM.	FM	<u>定和</u> の分布	(3)
		0		/			< - /

	$[m_v, m_e, m_f]$ の値
	[1, 1, 1]
正4面体	43:62 SP, 43:62 SP
正6面体	71:118 SP,100:143 SP
正8面体	100:143 SP, 71:118 SP

P: Perfect, 3-P: δ -Perfect($\delta = 3$), S: Singular, NX: 非存在

表 2 で示すように正 4 面体に対して [1,0,0], [0,1,0], [0,0,1] VM, FM ともに存在しないが,正 6 面体は [1,0,0] FM 定和 18, [0,1,0] FM 定和 26 が存在する³⁾. 図 5(a), (b) に正 6 面体 [1,0,0], [0,1,0] FM S^(F) = 18, S^(F) = 26 の実現例を示す.

表 3 に示すように [1,1,0] の正 6 面体の FM 定和は 76:92 の全ての値を構成できるので Perfect であり,それは正 8 面 体の [0,1,1] の VM 定和の分布と一致している. 正 6 面体の [1,1,0] FM 定和 $S_{\min}^{(F)} = 76$ の実現例を図 6-(a) に示す. 図 から頂点に $\{1, 2, \dots, 8\}$ が,辺に $\{9, 10, \dots, 20\}$ が配置され min S_V , max S_F が実現されていることがわかる. 図 6-(b) は

[0,1,1] VM 定和 $S_{\min}^{(V)} = 48$ の実現例である.面に {1,2,...,6} が,辺に {7,8,...,18} が配置されている.表 3 の正4面体 [0,1,1] VM 定和は区間 30:36 であるが,30,33,36 の定和 は構成できないので Singular である.同様に [1,0,1] VM 定和 の区間 14:22 の 15,18,21 が,[1,1,0] VM の定和区間 19:25 の 19,22,25 は構成できないのでそれぞれ Singular である. 正 6 面体において [1,1,0] EM の分布は Singlar であることが 得られている⁸⁾.命題 7 から正 8 面体で $m_e = 0$ の時,[1,0,1] FM 定和は $S^{(F)} \equiv -1 \cdot 3 \equiv 0 \pmod{3}$ であり,式 (19) から $S_{\sup}^{(F)} = 39, S_{\inf}^{(F)} = 21$ で [21,39] の区間で公差 $\delta = 3$ の全て の定和を実現できるので [1,0,1] FM 3-Perfect である.図 7 に FM 最小定和 $S_{\min} = 21$ の実現例を示す.頂点に {1,2,...,6} が,面に {7,8,...,14} が配置され min S_V , max S_F が実現さ れている.

図 6 正6面体の [1,1,0] FM 及び [0,1,1] VM の実現例

図 7 正8面体 [1,0,1] Face Magic $(S_{\min}^{(F)} = 21, n = 14)$

表 4 に示すように正 4 面体の [1,1,1] FM 定和は 43 から 62 まで,正 6 面体の FM 定和は 100 から 143 まで端の値を除いて 全て実現できるので それぞれ SemiPerfect である.図 4-(b) は 図 4(a) の FM の双対グラフとして得られる VM グラフである. 正 6 面体の FM 最小定和 $S_{\min}^{(f)} = 100$ を与える配置を図 8-(b) に 示す.同様に図 8 の双対グラフとして得られる正 8 面体 [1,1,1] VM グラフを図 9 に示す.式 (18) で示したように $S_{\inf}^{(V)}$ を与える には min S_F , max S_V 即ち面への配置を最小化し頂点への配置を 最大化することで得られるが図 9 の面には {1,2,3,4,5,6,7,10}, 頂点には $\{20, 22, 23, 24, 25, 26\}$ が配置されている.式 (19) で得 られる下限の値は 99.5 であり, min S_F , max S_V とすると定和 が整数にならないことになり, FM には min S_F , max S_V の両方 を実現することはできないことになる.同様に正8面体 [1, 1, 1] FM 最小定和の実現例の図 10 では式 (19) に示したように $S_{inf}^{(F)}$ は min S_V , max S_F で与えられる.頂点には $\{1, 2, 3, 4, 5, 8\}$ が, 面には $\{19, 20, 21, 22, 23, 24, 25, 26\}$ が配置されている.

図 9 正8面体 [1,1,1] Vertex Magic $(S_{\min}^{(V)} = 100, n = 26)$

図 10 正 8 面体 [1, 1, 1] Face Magic $(S_{\min}^{(F)} = 71, n = 26)$

正6面体と正8面体は ρ 双対グラフであるので VM 定和と FM 定和の分布は双対性が成り立つ.一般に命題8が成り立つ.

命題 8 ρ 双対と VM, FM 定和分布 二つの平面グラフ G_1, G_2 が ρ 双対とする. G_1 の VM 定和の分布と G_2 の FM 定和の分布は一致する.

図 5-(a) と図 11-(a) の [0, 1, 1] FM $S_{\min}^{(F)} = 42$ を式 (21) で FM 合成⁷⁾ することで 図 11-(b) に示す FM 最小定和 $S_{\min}^{(F)} = 100$ が構成できる.

$$\lambda_{[1,1,1]\min}^{(F)} = \lambda_{[1,0,0]} \oplus \lambda_{[0,1,1]} \tag{21}$$

しかし図 5(b) の [0,1,0] の FM に対して [1,0,1] の FM は存在 しないので合成することで [1,1,1] FM は構成できない. 図 8(b) と同一の FM 最小定和であるが (d) では $S_V = 36, S_F = 138$ であり, 図 8(b) で $S_V = 38, S_F = 140$ である. min $S_V =$ $36, \max S_F = 141$ であるの S_V の最小化や S_F の最大化を実現 せずに FM 最小定和を構成できている. 合成の順序を変えて式 (22) で [1,1,1] を構成するとその FM 定和は 132 となり, 最大 定和 143 に一致しない.

$$\lambda_{[1,1,1]}^{(F)} = \lambda_{[0,1,1]} \oplus \lambda_{[1,0,0]}$$
(22)

常に S_V を最小となる配置にして FM 最小定和を与えることが できるかや合成の順序を変える効果については今後の検討課題 である.

得られた Perfect, δ Perfect などの結果を命題9にまとめる.

	/	
1	命是	夏 9 正多面体の定和の分布
	(1)	以下は Perfect である
		(a) 正6面体 [0,1,1] VM 及び [1,1,0] VM, FM
		(b) 正8面体 [1,1,0] FM 及び [0,1,1] VM, FM
	(2)	以下は 3-Perfect である
		(a) 正6面体 [1,0,1] VM
		(b) 正8面体 [1,0,1] FM
	(3)	以下は SemiPerfect である
		(a) 正6面体 [0,1,1] FM
		(b) 正8面体 [1,1,0] VM
	(4)	正4面体,正6面体,正8面体は $[1,1,1]$ FM,VM
		SemiPerfect である
	(5)	以下は存在しない.
		(a) 正6面体 [1,0,1] FM
		(b) 正8面体 [1,0,1] VM

7. むすび 本報告では平面グラフに対する Magic Graph を統 一的に扱う方法を提案し、定和方程式を用いて Magic Graph 非 存在定理を示した. さらに平面グラフにおける双対性と Magic Graph との関係を述べた. SAT ソルバーを用いた探索を行うこ とで正4, 6, 8面体の VM, FM 定和の分布に双対性が成り立 つことを実験的に示した. 今後は正多面体における EM の定和 26の分布,正12,20面体の VM, FM 定和の双対性の確認,平

面グラフの VM, FM 定和の分布の双対性を証明する.

謝辞 平面グラフについて議論していただいた浅井和人上級准 教授,浅井信吉上級准教授,西舘陽平准教授 (会津大) に感謝し ます.

参考文献

- J.Sedláček, Problem 27, *in* Theory of Graphs and Its Applications, Proc. Symposium Smolenice, pp.163-164 (June 1963).
- W.D.Wallis, E. T. Baskoro, M. Miller, Edge-magic total labelings, Australasian Journal of Combinatorics, 22, pp.177-190 (Jan. 2000).
- Ko-Wei Lih, On Magic and Consecutive Labelings of Plane Graphs, Utilitas Math., 24, pp.165-197 (1983).
- M.Bača, On Magic and Consecutive Labelings for the Special Classes of Plane Graphs, Utilitas Math., 32, pp.59-65 (1987).
- M.Bača, et al, A survey of face-antimagic evaluations of graphs, Australasian Journal of Combinatorics, Vol. 69 (3), pp.382393 (2017).
- 6) 井上純一, グラフ理論講義ノート, 北海道大学 工学部 情報工学科/電子工学科 2003-2007. http://chaosweb.complex.eng.hokudai.ac.jp/~j_inoue/index.html
 7) 杉山雅英, Magic Graph の一般化とその性質, IPSJ 論文誌, Vol. 59, No.6,
- 7) 杉山雅英, Magic Graph の一般化とその性質, IPSJ 論文誌, Vol. 59, No.6, pp.1394-1404 (2018-06).
- 杉山雅英, Magic graph における定和の Perfect 性の伝搬と正多面体への適用, IPSJ 論文誌投稿中.
- J.A.Gallian, A Dynamic Survey of Graph Labeling, Electronic J. of Combinatorics (2016).
- A.M.Marr, W.D.Wallis, Magic Graphs. Second edition, Birkhuser/Springer, New York. (2013)
- 11) H. Enomoto, A. S. Llado, T. Nakamigawa, G. Ringel, Super Edge-
- Magic Graphs, SUT Journal Math., Vol.34, No.2, pp.105-109 (1998).

 12) 番原,他,SAT 技術の進化と応用,情報処理,Vol.57, No.8, pp.702-737 (2016-08).